A Method for Fast Initialization of Markerless Object Tracking

Jens Maiero and André Hinkenjann presented by Florian Bingel

EUROGRAPHICS 2010, Norrköping/Sweden

Vision / Idea

The vision/idea presented on this poster is interaction with arbitrary objects and assignment of different functionalities to these in virtual environments.

Motivation:
- development of an inexpensive Tracking-System
- fast initialization step
- reusability of the reference objects
- interact with predefined objects

Challenges:
- high accuracy
- low latency
- huge operational area

Feature Detection

Feature Definition:
- unique, distinctive picture element
- mathematical properties:
 - scale invariance
 - rotation invariance

Descriptor:
- only a local description
- specification of a feature
- important for matching-algorithms

Matching Algorithm

Random Sample Consensus (RANSAC) solves an equation with a huge number of outliers, especially in computer vision. The algorithm is stochastic, it is necessary to choose a minimal number of features which describe the model. The resultant assumption with the remaining elements is the homography.

Homography

The transformation between two planes is called Homography and is defined as follows:

\[x'_i = H \cdot x_i \]

rewriting the equation as:

\[x'_i \cdot H^{-1} = x_i \]

the representation of the cross product can also be written as:

\[A \cdot h = 0 \]

Equation 3 then can be solved by the single value decomposition.

Schematic workflow of the offline- and online-phase:

Offline:
1. initialization with or without a reference marker
2. marking the new object and saving as reference

Online:
3. feature extraction (Speeded Up Robust Features)
4. correspondence search by RANSAC or Least Median of Squares -> homographic transformation
5. rectification of the reference frame
6. absolute/relative pose calculation

Results

Performance:
- 4.5 fps on an Intel Core Duo Processor (2 Ghz, 1024 MB)
- 14.16 fps on a Nvidia GeForce 8800 GTX

Accuracy:
Concerning accuracy and radius of movement, the tracker equals the common marker based tracking libraries, except some jitter and infrequent fails of position estimation.

Future Work

- evaluation of the interaction in VE
- implementation of a kalman filter
- integration in a VE-Framework
- extend the tracker for 3d-objects

References:

Screenshots of the application

Contact: Jens Maiero and André Hinkenjann - Computer Graphics Lab - 53757 Sankt Augustin

E-Mail: {jens.maiero, andre.hinkennjann}@h-brs.de